4.8 Article

Unlocking Few-Layered Ternary Chalcogenides for High-Performance Potassium-Ion Storage

Journal

ADVANCED ENERGY MATERIALS
Volume 9, Issue 29, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201901560

Keywords

chalcogenides; few-layered; potassium-ion storage; ternary; ultrastable

Ask authors/readers for more resources

Potassium-ion batteries (KIBs) have attracted increasing attention for grid-scale energy storage due to the abundance of potassium resources, low cost, and competitive energy density. The key challenge for KIBs is to develop high-performance electrode materials. However, the exploration of high-capacity and ultrastable electrodes for KIBs remains challenging because of the sluggish diffusion kinetics of K+ ions during the charging/discharging processes. This study reports for the first time a facile ion-intercalation-mediated exfoliation method with Mg2+ cations and NO3- anions as ion assistants for the fabrication of expanded few-layered ternary Ta2NiSe5 (EF-TNS) flakes with interlayer spacing up to 1.1 nm and abundant Se sites (NiSe4 tetrahedra/TaSe6 octahedra clusters) for superior potassium-ion storage. The EF-TNS deliver a high capacity of 315 mAh g(-1), excellent rate capability (121 mAh g(-1) at a current density of 1000 mA g(-1)), and ultrastable cycling performance (81.4% capacity retention after 1100 cycles). Detailed theoretical analysis via first-principles calculations and experimental results elucidate that K+ ions intercalate through the expanded interlayers effectively and prefer to transport along zigzag pathways in layered Ta2NiSe5. This work provides a new avenue for designing novel ternary intercalation/pseudocapacitance-type KIBs with high capacity, excellent rate capability, and superior long-term cycling performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available