4.8 Article

Potential-Induced Pitting Corrosion of an IrO2(110)-RuO2(110)/Ru(0001) Model Electrode under Oxygen Evolution Reaction Conditions

Journal

ACS CATALYSIS
Volume 9, Issue 7, Pages 6530-6539

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.9b01402

Keywords

electrocatalysis; catalytic stability; anodic corrosion; oxygen evolution reaction (OER); in situ studies; single-crystalline IrO2(110) model electrodes; SXRD; XRR

Funding

  1. BMBF [05K2016-HEXCHEM]
  2. DFG [SPP2080: Ov21-16]

Ask authors/readers for more resources

Sophisticated IrO2(110)-based model electrodes are prepared by deposition of a 10 nm thick single-crystalline IrO2(110) layer supported on a structure-directing RuO2(110)/Ru(0001) template, exposing a regular array of mesoscopic rooflike structures. With this model electrode together with the dedicated in situ synchrotron based techniques (SXRD, XRR) and ex situ characterization techniques (SEM, ToF-SIMS, XPS), the corrosion process of IrO2(110) in an acidic environment (pH 0.4) is studied on different length scales. Potential-induced pitting corrosion starts at 1.48 V vs SHE and is initiated at so-called surface grain boundaries, where three rotational domains of IrO2(110) meet. The most surprising result is, however, that even when the electrode potential is increased to 1.94 V vs SHE 60-70% of the IrO2 film still stays intact down to the mesoscale and atomic scale and no uniform thinning of the IrO2(110) layer is encountered. Neither flat IrO2(110) terraces nor single steps are attacked. Ultrathin single crystalline IrO2(110) layers seem to be much more stable to anodic corrosion than hitherto expected.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available