4.8 Article

Direct imaging of the circular chromosome in a live bacterium

Journal

NATURE COMMUNICATIONS
Volume 10, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-10221-0

Keywords

-

Funding

  1. ERC Advanced Grant SynDiv [669598]
  2. Netherlands Organization of Scientific Research (NWO/OCW), Frontiers of Nanoscience Program
  3. Rubicon fellowship
  4. Swiss National Science Foundation [P2ELP2_168554, P300P2_177768]
  5. Swiss National Science Foundation (SNF) [P2ELP2_168554, P300P2_177768] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Although the physical properties of chromosomes, including their morphology, mechanics, and dynamics are crucial for their biological function, many basic questions remain unresolved. Here we directly image the circular chromosome in live E. coli with a broadened cell shape. We find that it exhibits a torus topology with, on average, a lower-density origin of replication and an ultrathin flexible string of DNA at the terminus of replication. At the single-cell level, the torus is strikingly heterogeneous, with blob-like Mbp-size domains that undergo major dynamic rearrangements, splitting and merging at a minute timescale. Our data show a domain organization underlying the chromosome structure of E. coli, where MatP proteins induce site-specific persistent domain boundaries at Ori/Ter, while transcription regulators HU and Fis induce weaker transient domain boundaries throughout the genome. These findings provide an architectural basis for the understanding of the dynamic spatial organization of bacterial genomes in live cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available