4.8 Article

Proton-assisted creation of controllable volumetric oxygen vacancies in ultrathin CeO2-x for pseudocapacitive energy storage applications

Journal

NATURE COMMUNICATIONS
Volume 10, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-10621-2

Keywords

-

Funding

  1. Australian Research Council [DP170104130]
  2. UPA
  3. RTP

Ask authors/readers for more resources

Two-dimensional metal oxide pseudocapacitors are promising candidates for size-sensitive applications. However, they exhibit limited energy densities and inferior power densities. Here, we present an electrodeposition technique by which ultrathin CeO2-x films with controllable volumetric oxygen vacancy concentrations can be produced. This technique offers a layer-by-layer fabrication route for ultrathin CeO(2-x )films that render Ce3+ concentrations as high as similar to 60 at% and a volumetric capacitance of 1873 F cm(-3), which is among the highest reported to the best of our knowledge. This exceptional behaviour originates from both volumetric oxygen vacancies, which enhance electron conduction, and intercrystallite water, which promotes proton conduction. Consequently, simultaneous charging on the surface and in the bulk occur, leading to the observation of redox pseudocapacitive behaviour in CeO2-x. Thermodynamic investigations reveal that the energy required for oxygen vacancy formation can be reduced significantly by proton-assisted reactions. This cyclic deposition technique represents an efficient method to fabricate metal oxides of precisely controlled defect concentrations and thicknesses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available