4.8 Article

Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells

Journal

NATURE COMMUNICATIONS
Volume 10, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-09405-5

Keywords

-

Funding

  1. French National Research Agency through the Investments for the Future program (France-BioImaging) [ANR-10-INSB-04]
  2. Curie Institute, INSERM
  3. CNRS
  4. Association Francaise contre les Myopathies (AFM) [17151, 14266, 14293]
  5. Agence Nationale de la Recherche (DECAV-RECAV) [ANR-14-CE09-0008-03]
  6. Polish Ministry of Science and Higher Education Mobility Plus program [1668/MOB/V/2017/0]
  7. Agence Nationale de la Recherche (ANR) [ANR-14-CE09-0008] Funding Source: Agence Nationale de la Recherche (ANR)

Ask authors/readers for more resources

Caveolin-3 is the major structural protein of caveolae in muscle. Mutations in the CAV3 gene cause different types of myopathies with altered membrane integrity and repair, expression of muscle proteins, and regulation of signaling pathways. We show here that myotubes from patients bearing the CAV3 P28L and R26Q mutations present a dramatic decrease of caveolae at the plasma membrane, resulting in abnormal response to mechanical stress. Mutant myotubes are unable to buffer the increase in membrane tension induced by mechanical stress. This results in impaired regulation of the IL6/STAT3 signaling pathway leading to its constitutive hyperactivation and increased expression of muscle genes. These defects are fully reversed by reassembling functional caveolae through expression of caveolin-3. Our study reveals that under mechanical stress the regulation of mechanoprotection by caveolae is directly coupled with the regulation of IL6/STAT3 signaling in muscle cells and that this regulation is absent in Cav3-associated dystrophic patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available