4.8 Article

Anoxygenic photosynthesis and the delayed oxygenation of Earth's atmosphere

Journal

NATURE COMMUNICATIONS
Volume 10, Issue -, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41467-019-10872-z

Keywords

-

Funding

  1. NASA Postdoctoral Program at the NASA Astrobiology Institute
  2. JSPS KAKENHI [JP25870185]
  3. NASA Astrobiology Institute
  4. Alfred P. Sloan Foundation
  5. NSERC [0487]

Ask authors/readers for more resources

The emergence of oxygenic photosynthesis created a new niche with dramatic potential to transform energy flow through Earth's biosphere. However, more primitive forms of photosynthesis that fix CO2 into biomass using electrons from reduced species like Fe(II) and H-2 instead of water would have competed with Earth's early oxygenic biosphere for essential nutrients. Here, we combine experimental microbiology, genomic analyses, and Earth system modeling to demonstrate that competition for light and nutrients in the surface ocean between oxygenic phototrophs and Fe(II)-oxidizing, anoxygenic photosynthesizers (photoferrotrophs) translates into diminished global photosynthetic O-2 release when the ocean interior is Fe(II)-rich. These results provide a simple ecophysiological mechanism for inhibiting atmospheric oxygenation during Earth's early history. We also find a novel positive feedback within the coupled C-P-O-Fe cycles that can lead to runaway planetary oxygenation as rising atmospheric pO(2) sweeps the deep ocean of the ferrous iron substrate for photoferrotrophy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available