4.8 Article

Revealing the intrinsic nature of the mid-gap defects in amorphous Ge2Sb2Te5

Journal

NATURE COMMUNICATIONS
Volume 10, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-019-10980-w

Keywords

-

Funding

  1. UK Engineering and Physical Sciences Research Council (EPSRC) [EP/N022009]
  2. EPSRC Centre for Doctoral Training in Computational Methods for Materials Science [EP/L015552/1]
  3. EPSRC [EP/L000202, EP/R029431]
  4. EPSRC [EP/N022009/1, EP/R029431/1] Funding Source: UKRI

Ask authors/readers for more resources

Understanding the relation between the time-dependent resistance drift in the amorphous state of phase-change materials and the localised states in the band gap of the glass is crucial for the development of memory devices with increased storage density. Here a machine-learned interatomic potential is utilised to generate an ensemble of glass models of the prototypical phase-change alloy, Ge2Sb2Te5, to obtain reliable statistics. Hybrid density-functional theory is used to identify and characterise the geometric and electronic structures of the mid-gap states. 5-coordinated Ge atoms are the local defective bonding environments mainly responsible for these electronic states. The structural motif for the localisation of the mid-gap states is a crystalline-like atomic environment within the amorphous network. An extra electron is trapped spontaneously by these mid-gap states, creating deep traps in the band gap. The results provide significant insights that can help to rationalise the design of multi-level-storage memory devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available