4.5 Article

Dehydrocorydaline inhibits cell proliferation, migration and invasion via suppressing MEK1/2-ERK1/2 cascade in melanoma

Journal

ONCOTARGETS AND THERAPY
Volume 12, Issue -, Pages 5163-5175

Publisher

DOVE MEDICAL PRESS LTD
DOI: 10.2147/OTT.S183558

Keywords

dehydrocorydaline; melanoma; cell cycle; migration and invasion; MAPK

Funding

  1. Chongqing Special Postdoctoral Science Foundation [XmT2018080]
  2. Fundamental Research Funds for the Central Universities [XDJK2019C013]
  3. National Key Research and Development Program of China [2016YFC1302204, 2017YFC1308600]
  4. National Natural Science Foundation of China [81672502]

Ask authors/readers for more resources

Purpose: Alkaloids are naturally occurring chemical compounds that are widely distributed in plants, and have pharmaceutical values and low toxicity. In recent years, some of them have been demonstrated to be promising therapeutic drug candidates for cancer treatment. Herein, we tried to explore the antitumor effect of dehydrocorydaline (DHC), a natural alkaloid isolated from Corydalis, on malignant melanoma. Methods: We treated two malignant metastatic melanoma cell lines, A375 and MV3, and a normal melanocyte cell line, PIG1, with various concentrations of DHC for set amounts of time, and detected cell proliferation, migration, and invasion by using MTT, BrdU, transwell, Western blot and soft agar assay in vitro and tumorigenicity in the xenografts in vivo. Results: Our results showed that DHC dramatically blocked cell proliferation and led to cell cycle arrest at G0/G1 phase and downregulated the expressions of cell cycle regulators CDK6 and Cyclin D1 in melanoma cells. However, DHC had little inhibitory effect on normal melanocyte cell line PIG-1. Meanwhile, DHC suppressed cell invasion and migration through modulating the epithelial-mesenchymal transition (EMT) markers including E-cadherin, vimentin, as well as beta-catenin. In addition, DHC also significantly attenuated tumor growth in vivo. The expressions of cell cycle-related and metastasis-related proteins were further confirmed by immunohistochemical staining in the xenografts. Importantly, MEK1/2-ERK1/2 cascade was inactivated after DHC treatment and ERK activator t-butyl-hydroquinone (tBHQ) treatment rescued DHC-induced cell proliferation inhibition. Conclusions: Our results indicated that DHC inhibited cell proliferation and migration/invasion via inactivating MAPK signaling, and showed that DHC might be a potential novel drug to treat malignant melanoma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available