4.6 Article

Identification of differentially expressed genes regulated by methylation in colon cancer based on bioinformatics analysis

Journal

WORLD JOURNAL OF GASTROENTEROLOGY
Volume 25, Issue 26, Pages 3392-3407

Publisher

BAISHIDENG PUBLISHING GROUP INC
DOI: 10.3748/wjg.v25.i26.3392

Keywords

Colon cancer; Bioinformatics analysis; The Cancer Genome Atlas project; DNA methylation; Methylation-regulated differentially expressed genes; Overall survival

Ask authors/readers for more resources

BACKGROUND DNA methylation, acknowledged as a key modification in the field of epigenetics, regulates gene expression at the transcriptional level. Aberrant methylation in DNA regulatory regions could upregulate oncogenes and downregulate tumor suppressor genes without changing the sequences. However, studies of methylation in the control of gene expression are still inadequate. In the present research, we performed bioinformatics analysis to clarify the function of methylation and supply candidate methylation-related biomarkers and drivers for colon cancer. AIM To identify and analyze methylation-regulated differentially expressed genes (MeDEGs) in colon cancer by bioinformatics analysis. METHODS We downloaded RNA expression profiles, Illumina Human Methylation 450K BeadChip data, and dinical data of colon cancer from The Cancer Genome Atlas project. MeDEGs were identified by analyzing the gene expression and methylation levels using the edgeR and limma package in R software. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed in the DAVID database and KEGG Orthology-Based Annotation System 3.0, respectively. We then conducted Kaplan-Meier survival analysis to explore the relationship between methylation and expression and prognosis. Gene set enrichment analysis (GSEA) and investigation of protein-protein interactions (PPI) were performed to clarify the function of prognosis-related genes. RESULTS A total of 5 up-regulated and 81 down-regulated genes were identified as MeDEGs. GO and KEGG pathway analyses indicated that MeDEGs were enriched in multiple cancer-related terms. Furthermore, Kaplan-Meier survival analysis showed that the prognosis was negatively associated with the methylation status of glial cell-derived neurotrophic factor (GDNF) and reelin (RELN). In PPI networks, GDNF and RELN interact with neural cell adhesion molecule 1. Besides, GDNF can interact with GDNF family receptor alpha (GFRA1), GFRA2, GFRA3, and RET. RELN can interact with RAFAH1B1, disabled homolog 1, very low-density lipoprotein receptor, lipoprotein receptor-related protein 8, and NMDA 2B. Based on GSEA, hypermethylation of GDNF and RELN were both significantly associated with pathways including RNA degradation, ribosome, mismatch repair, cell cycle and base excision repair. CONCLUSION Aberrant DNA methylation plays an important role in colon cancer progression. MeDEGs that are associated with the overall survival of patients may be potential targets in tumor diagnosis and treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available