4.8 Article

A molecular-based method to estimate the risk associated with cyanotoxins and odor compounds in drinking water sources

Journal

WATER RESEARCH
Volume 164, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.114938

Keywords

Response level; Cyanotoxins; Drinking water; 2-Methylisoborneol; Real-time PCR; Risk

Funding

  1. Taiwan Ministry of Science and Technology [MOST 107-2221-E-006-195-MY3, MOST 106-2921-I-006-302-MY3]
  2. National Cheng Kung University, Taiwan (the University Advancement Project) - Taiwan Ministry of Education
  3. Taiwan Water Resource Agency [MOEWRA1080229]

Ask authors/readers for more resources

A biomolecular-based monitoring approach for the assessment of water quality hazards and risks associated with cyanobacteria was developed and validated in drinking reservoirs in Taiwan and the Philippines. The approach was based upon the measurement of gene abundances of toxigenic Microcystis and Cylindrospermopsis; for cyanotoxins; and for aesthetically offensive earthy-musty odor compounds. This was compared to conventional monitoring approaches, which included cell enumeration by microscopy, and toxin and odor compound analysis by instrumental analytical methods and immunoassays as appropriate for the metabolites. The validation involved samples from ten major reservoirs on Taiwan's main island, nineteen reservoirs on the offshore islands, and Laguna de Bay in the Philippines. The gene-based approach was successfully validated statistically and compared to conventional widely utilized risk assessment schemes which have employed 'Alert Levels' for toxic cyanobacteria. In this case a new integrated scheme of 'Response Levels' is proposed which incorporates odor metabolite hazards in addition to cyanotoxins and is based upon gene copy numbers to derive quantitative triggers. The comprehensive scheme evaluated from these locations is considered to be more precise and efficient for both monitoring and as a risk assessment diagnostic tool, given that it offers the capacity for analysis of the abundance of genes for cyanobacterial metabolites in large numbers of natural water samples in a significantly reduced period of time compared to the approaches of cell enumeration by microscopy or metabolite analytical techniques. This approach is the first time both the hazard and risk for both odors and cyanotoxins from cyanobacteria have been considered together in a monitoring scheme and offers an improved means for determining the Response Levels in the risk assessment process for cyanobacteria and their metabolites in drinking water sources. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available