4.8 Article

Mechanisms of metabolic performance enhancement during electrically assisted anaerobic treatment of chloramphenicol wastewater

Journal

WATER RESEARCH
Volume 156, Issue -, Pages 199-207

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.03.032

Keywords

Anaerobic treatment; Chloramphenicol wastewater; Methane production; Functional bacteria; Antibiotic-resistant bacteria

Funding

  1. National Natural Science Foundation of China (NSFC) [51508309, 51878389]
  2. Shandong Key Laboratory of Water Pollution Control and Resource Reuse [2019KF12]

Ask authors/readers for more resources

The anaerobic process is a favorable alternative for the treatment of antibiotic pharmaceutical wastewater. The electrically assisted anaerobic process can be used to accelerate contaminant removal, especially for persistent organic pollutants such as antibiotics. In this study, an electrically assisted anaerobic system for chloramphenicol (CAP) wastewater treatment was developed. The system performance and the underlying metabolic mechanisms were evaluated under different applied voltages. With the increase of applied voltage from 0 to 2 V, the CAP removal efficiencies increased from 53.3% to 89.7%, while the methane production increased more than three times. The microbial community structure and correlation analysis showed that electrical stimulation selected the dominant functional bacteria and increased antibiotic resistance in dominant functional bacteria, both of which enhanced CAP removal and methane production. The improved CAP removal was a result of the presence of dechlorination-related bacteria (Acidovorax, Sedimentibacter, Thauera, and Flavobacterium) and potential electroactive bacteria (Shewanella and Comamonas), both of which carried ARGs and therefore could survive the biotoxicity of CAP. The enhanced methane production could be partly attributed to the surviving fermentative-related bacteria (Paludibacter, Proteiniclasticum, and Macellibacteroides) in the anaerobic bioreactor. The increased abundances of methanogenic genes (mcrA and ACAS genes) under high voltage further confirmed the enhanced methane production of this electrically assisted anaerobic system. The fundamental understanding of the mechanisms underlying metabolic performance enhancement is critical for the further development of anaerobic wastewater treatment. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available