4.7 Article

Mechanical properties and wear resistance of medium entropy Fe40Mn40Cr10Co10/TiC composites

Journal

TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
Volume 29, Issue 7, Pages 1484-1494

Publisher

ELSEVIER
DOI: 10.1016/S1003-6326(19)65055-7

Keywords

TiC; Fe40Mn40Cr10Co10/TiC composites; mechanical properties; wear resistance; spark plasma sintering

Funding

  1. National Natural Science Foundation of China [51404302]
  2. EPSRC [EP/N007638/1] Funding Source: UKRI

Ask authors/readers for more resources

The Fe40Mn40Cr10Co10/TiC (volume fraction of TiC, 10%) composites were synthesized in combination of ball milling and spark plasma sintering (SPS) in the present work. Mechanical properties and wear resistance of the Fe40Mn40Cr10Co10/TiC composites were individually investigated. It was found that TiC particles homogenously distributed in the Fe40Mn40Cr10Co10/TiC composite after being sintered at 1373 K for 15 min. Meanwhile, grain refinement was observed in the as-sintered composite. Compared with the pure Fe40Mn40Cr10Co10 medium entropy alloy (MEA) matrix grain, addition of 10% TiC particles resulted in an increase in the compressive strength from 1.571 to 2.174 GPa, and the hardness from HV 320 to HV 872. Wear resistance results demonstrated that the friction coefficient, wear depth and width of the composite decreased in comparison with the Fe40Mn40Cr10Co10 MEA matrix. Excellent mechanical properties and wear resistance could offer the Fe40Mn40Cr10Co10/TiC composite a very promising candidate for engineering applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available