4.6 Article

Optical Detection of Vapor Mixtures Using Structurally Colored Butterfly and Moth Wings

Journal

SENSORS
Volume 19, Issue 14, Pages -

Publisher

MDPI
DOI: 10.3390/s19143058

Keywords

butterfly wing; moth wing; photonic crystal; vapor sensing; vapor mixture; principal component analysis; chemical selectivity; optical readout

Funding

  1. National Research, Development and Innovation Office of Hungary-NKFIH [K 111741, K 115724]

Ask authors/readers for more resources

Photonic nanoarchitectures in the wing scales of butterflies and moths are capable of fast and chemically selective vapor sensing due to changing color when volatile vapors are introduced to the surrounding atmosphere. This process is based on the capillary condensation of the vapors, which results in the conformal change of the chitin-air nanoarchitectures and leads to a vapor-specific optical response. Here, we investigated the optical responses of the wing scales of several butterfly and moth species when mixtures of different volatile vapors were applied to the surrounding atmosphere. We found that the optical responses for the different vapor mixtures fell between the optical responses of the two pure solvents in all the investigated specimens. The detailed evaluation, using principal component analysis, showed that the butterfly-wing-based sensor material is capable of differentiating between vapor mixtures as the structural color response was found to be characteristic for each of them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available