4.5 Article

BDNF increases synaptic NMDA receptor abundance by enhancing the local translation of Pyk2 in cultured hippocampal neurons

Journal

SCIENCE SIGNALING
Volume 12, Issue 586, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scisignal.aav3577

Keywords

-

Funding

  1. Portuguese Science and Technology Foundation (FCT)
  2. European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme [POCI-01-0145-FEDER-028656, UID/BIM/4501/2013]
  3. FCT [UID/NEU/04539/2019, PEst-C/SAU/LA0001/2013-2014, PTDC/SAU-NEU/104297/2008, SFRH/BPD/115546/2016, PD/BD/135498/2018]
  4. Liga Portuguesa Contra a Epilepsia
  5. European Regional Development Fund (ERDF) through the COMPETE 2020-Operational Programme for Competitiveness and Internationalisation
  6. Fundação para a Ciência e a Tecnologia [PD/BD/135498/2018, PTDC/SAU-NEU/104297/2008] Funding Source: FCT

Ask authors/readers for more resources

The effects of brain-derived neurotrophic factor (BDNF) in long-term synaptic potentiation (LTP) are thought to underlie learning and memory formation and are partly mediated by local protein synthesis. Here, we investigated the mechanisms that mediate BDNF-induced alterations in the synaptic proteome that are coupled to synaptic strengthening. BDNF induced the synaptic accumulation of GIuN2B-containing NMDA receptors (NMDARs) and increased the amplitude of NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) in cultured rat hippocampal neurons by a mechanism requiring activation of the protein tyrosine kinase Pyk2 and dependent on cellular protein synthesis. Single-particle tracking using quantum dot imaging revealed that the increase in the abundance of synaptic NMDAR currents correlated with their enhanced stability in the synaptic compartment. Furthermore, BDNF increased the local synthesis of Pyk2 at the synapse, and the observed increase in Pyk2 protein abundance along dendrites of cultured hippocampal neurons was mediated by a mechanism dependent on the ribonucleoprotein hnRNP K, which bound to Pyk2 mRNA and dissociated from it upon BDNF application. Knocking down hnRNP K reduced the BDNF-induced synaptic synthesis of Pyk2 protein, whereas its overexpression enhanced it. Together, these findings indicate that hnRNP K mediates the synaptic distribution of Pyk2 synthesis, and hence the synaptic incorporation of GIuN2B-containing NMDARs, induced by BDNF, which may affect LTP and synaptic plasticity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available