4.7 Article

The effect of crystal phase of manganese oxide on the capacitive deionization of simple electrolytes

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 675, Issue -, Pages 31-40

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.04.172

Keywords

Capacitive deionization; MnO2; Surface charge density; Structure induced surface charge effect

Funding

  1. Ministry of Science and Technology, Taiwan [MOST 105-2113-M-007-022-MY2, MOST 106-2113-M-007-014]
  2. National Science Foundation of Fujian [2018J01526]
  3. US NSF IOA [1632899]

Ask authors/readers for more resources

MnO2 is a common material for the fabrication and design of capacitive deionization (CDI) devices but there is little information on the role of MnO2 crystal phase on CDI performance. A series of MnO2 (alpha, beta, gamma, and delta phase) were synthesized and fabricated as cathodes for studying the CDI performance as affected by pH in simple batch mode experiments. Our results revealed that the deionization efficiency decreased with increased negative surface charge as a result of the deprotonated surface. Importantly, this correlation was pH independent and the surface heterogeneity due to different MnO2 phase was likely responsible for the different degree of surface ionization and consequently the CDI efficiency. Results of electrochemical impedance spectroscopy analyses further implicated that a highly ionized surface would result in a diffusion layer with a great resistance that conversely inhibited the access of co-ions in the CDI process. This indicated the applied potential was mainly responsible for driving ions transporting through the double layer resistance instead of accommodating them (electrosorption). Based on our results, the surface heterogeneity as a result of different spatially distributed MnO6 octahedral would be accounted for the varying degree of surface ionization and consequently the discrepancy in CDI efficiency among different MnO2 phases. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available