4.7 Article

Core-shell design and well-dispersed Pd particles for three-way catalysis: Effect of halloysite nanotubes functionalized with Schiff base

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 675, Issue -, Pages 397-407

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.04.243

Keywords

Schiff base; Three-way catalyst; Halloysite nanotubes; Core-shell

Ask authors/readers for more resources

In this study, we have described the synthesis of core@shell three-way catalyst with well-dispersed Pd nanoparticles which were intercalated into halloysite nanotubes (HNTs) material via ligand assistance. The prepared parameters of Pd@HNTs catalyst included amine source, the molar ratio of amine and aldehyde, and the addition of CeO2 promoter. As a result, Pd@HNTs performed a good dispersion of Pd particles and high stability, which is attributed to the strong interaction between Pd and HNTs with Schiff base ligands and the high thermal resistance of HNTs as a sintering barrier. Moreover, the results of various characteristic analyses revealed that Pd@HNT-E12 (ethylenediamine: salicylaldehyde in a molar ratio of 1:2) exhibited the highest gases conversion to the others, which has excellent redox ability. Furthermore, the addition of CeO2, which acted as both a promoter and a protector, could provide more oxygen vacancies for promoting NO reduction and CO and C3H8 oxidation at gradually elevated temperatures. Such core-shell catalyst Ce@Pd@HNT-E12 could avoid excess CeO2 penetrating into the pore volume of halloysite support and facilitate the three-way catalytic reaction. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available