4.7 Article

Combined use of diffusive gradients in thin film, high-resolution dialysis technique and traditional methods to assess pollution and bioavailability of sediment metals of lake wetlands in Taihu Lake Basin

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 671, Issue -, Pages 28-40

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2019.03.053

Keywords

DGT; HR-Peeper; Background value; Geochemical baseline; BCR sequential extraction; Metal remobilization

Funding

  1. Major Science and Technology Program for Water Pollution Control and Treatment of China [2017ZX07206]

Ask authors/readers for more resources

The geochemical behavior of trace metals at the sediment/water interface in Taihu Lake, the third-largest fresh water lake in China, has been widely explored. However, information on metals in lake wetlands of the basin is lacking. Here, diffusive gradients in thin film (DGT), high-resolution dialysis technique (HR-Peeper) and traditional methods were jointly used to study the occurrence characteristics, pollution degree, bioavailability, and mobility of sediment metals in the northern lake wetlands of Jiaxing City in Taihu Lake Basin. The contents of Cr, Ni, Cu, Zn, As, Cd and Pb were 101, 52.8, 62.3, 184, 10.3, 0.4, and 39.8 mg/kg, respectively. The metals in the sediments were in an overall low enrichment level. The main form of Cd was acid-soluble (F1), and the other metals mainly existed in residual (F4) or oxidable (F3) forms. The mean DGT-labile contents (C-DGT) of Cr, Ni, Cu, Zn, As, Cd and Pb were 1.3, 1.2, 9.3, 6.7, 13.4, 0.7, and 0.8 mu g/L, respectively. CDGT-Cu and CDGT-As were significantly and positively related to the Cu and As contents in pore water (C-sol). CDGT-Cr, CDGT-Cd, CDGT-Pb, and CDGT-Cu were significantly and positively related to CF1-Cr, CF1-Cd, CF1-Pb, and CF3-Cu, respectively. The stability of Cd was the worst with a mean risk assessment code of 40%, indicating a high risk of remobilization in the sediment. The remobilization risks of other metals were low or moderate. The CDGT/Csol ratio of Cd was also the largest, with a mean of 0.99, suggesting that the Cd resupplying ability from sediment solid to pore water was strong. (c) 2019 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available