4.7 Article

Upward propagation of lightning-generated whistler waves into the radiation belts

Journal

SCIENCE CHINA-TECHNOLOGICAL SCIENCES
Volume 63, Issue 2, Pages 243-248

Publisher

SCIENCE PRESS
DOI: 10.1007/s11431-018-9486-9

Keywords

lightning-generated whistler waves; radiation belts; numerical simulation

Ask authors/readers for more resources

Lightning-generated whistler (LGW) waves which induce energetic electron precipitation provide an important coupling between the ionosphere and radiation belts. Using the ray-tracing technique, we examine the propagation behaviour of LGW waves and show that they can travel upward into the radiation belts during higher geomagnetic activities due to the plasmapause inward compression, particularly in cases of lower wave frequencies, lower wave normal angles and azimuthal angles. Both perpendicular and parallel group velocities of LGW waves remain in relatively small values inside the plasmasphere but change rapidly to high values outside the plasmasphere. The launching latitude increases with increasing LGW wave normal angle. These results here further reveal a detailed picture on how LGW waves escape out of the plasmasphere and onto the radiation belts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available