4.4 Article

Progressive reduction of auditory evoked gamma in first episode schizophrenia but not clinical high risk individuals

Journal

SCHIZOPHRENIA RESEARCH
Volume 208, Issue -, Pages 145-152

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.schres.2019.03.025

Keywords

EEG; Clinical high risk; First episode schizophrenia; Gamma oscillation

Categories

Funding

  1. U.S. Department of Veterans Affairs [CX000154]
  2. National Institute of Mental Health [K05MH070047, R01MH50747, R01MH40799, R01MH052807, CIDAR P50MH080272, R01MH080187, R01MH093450, SCDMH82101008006]
  3. Commonwealth Research Center of theMassachusetts Department ofMentalHealth [SCDMH82101008006]
  4. Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation [S2208]
  5. Japan Society for the Promotion of Science [22791129, 15K19735]
  6. Fund for Pharmacopsychiatry Research from the Senshin Medical Research Foundation
  7. Grants-in-Aid for Scientific Research [15K19735, 22791129] Funding Source: KAKEN

Ask authors/readers for more resources

The early auditory-evoked gamma band response (EAGBR) may serve as an index of the integrity of fast recurrent inhibition or synaptic connectivity in the auditory cortex, where abnormalities in individuals with schizophrenia have been consistently found. The EAGBR has been rarely investigated in first episode schizophrenia patients (FESZ) and individuals at clinical high risk (CHR) for schizophrenia, and never been compared directly between these populations nor evaluated longitudinally. Here we examined the EAGBR in FESZ, CHR, and matched healthy controls (HC) at baseline and 1-year follow-up assessments to determine whether the EAGBR was affected in these clinical groups, and whether any EAGBR abnormalities changed over time. The electroencephalogram was recorded with a dense electrode array while subjects (18 FESZ, 18 CHR, and 40 HC) performed an auditory oddball task. Event-related spectral measures (phase locking factor [PLF] and evoked power) were computed on Morlet-wavelet-transformed single epochs from the standard trials. At baseline, EAGBR PIS and evoked power did not differ between groups. FESZ showed progressive reductions of PLF and evoked power from baseline to follow-up, and deficits in PLF at follow-up compared to HC. EAGBR peak frequency also increased at temporal sites in FESZ from baseline to follow-up. Longitudinal effects on the EAGBR were not found in CHR or HC, nor did these groups differ at follow-up. In conclusion, we detected neurophysiological changes of auditory cortex function in FESZ during a one-year period, which were not observed in CHR. These findings are discussed within the context of neurodevelopmental models of schizophrenia. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available