4.3 Article

Effect of management strategies on reducing negative impacts of climate change on water resources of the Isfahan-Borkhar aquifer using MODFLOW

Journal

RIVER RESEARCH AND APPLICATIONS
Volume 35, Issue 6, Pages 611-631

Publisher

WILEY
DOI: 10.1002/rra.3463

Keywords

climate change; groundwater management; groundwater modelling system; Iran; MODFLOW

Ask authors/readers for more resources

Recently, many studies have investigated the effect of climate change on groundwater resources in semiarid and arid areas and have shown adverse effects on groundwater recharge and water level. However, only a few studies have shown suitable strategies for reducing these adverse effects. In this study, climate conditions were predicted for the future period of 2020-2044, under the emission scenarios of RCP2.6, RCP4.5, and RCP8.5, for Isfahan-Borkhar aquifer, Isfahan, Iran, using MODFLOW-2000 (MODFLOW is United States Geological Survey product). Results showed that the average groundwater level of the aquifer would decrease to 13, 15, and 16 m in 2012 to 2044 approximately under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Then, three groundwater sustainability management scenarios were defined that included 10%, 30%, and 50% reduction in groundwater extraction. These strategies simulated the reduced negative effects of climate change on the aquifer. The results showed that decreases in water withdrawal rates of 10%, 30%, and 50% under RCP8.5 scenario (critical scenario) could decrease the mean groundwater level by 14, 11, and 7 m, respectively. The main result of the study showed that 50% reduction in groundwater withdrawal may increase the groundwater levels significantly in order to restore the aquifer sustainability in the study area. In this study, with assuming that the current harvest of wells in the future period is constant, so the results of studies showed that for the aquifer's sustainability management, the water abstraction from the aquifer should reduce up to 50% of the existing wells. Changing the irrigation method from surface to subdroplet irrigation plays an important role in reducing the withdrawal from the aquifer. The results of a study in Iran have shown that the change in the irrigation method from surface to subdroplet irrigation causes a 40% reduction in water use for agriculture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available