4.5 Article

Process stability for GTAW-based additive manufacturing

Journal

RAPID PROTOTYPING JOURNAL
Volume 25, Issue 5, Pages 809-819

Publisher

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/RPJ-02-2018-0046

Keywords

Gas tungsten arc welding; Omnidirectional welding; Process stability; Wire and arc additive manufacturing

Funding

  1. China Aerospace Science and Industry Corp Foundation [HTKG2017ZJT21081]

Ask authors/readers for more resources

Purpose Traditional gas tungsten arc welding (GTAW) and GTAW-based wire and arc additive manufacturing (WAAM) are notably different. These differences are crucial to the process stability and surface quality in GTAW WAAM. This paper addresses special characteristics and the process control method of GTAW WAAM. The purpose of this paper is to improve the process stability with sensor information fusion in omnidirectional GTAW WAAM process. Design/methodology/approach A wire feed strategy is proposed to achieve an omnidirectional GTAW WAAM process. Thus, a model of welding voltage with welding current and arc length is established. An automatic control system fit to the entire GTAW WAAM process is established using both welding voltage and welding current. The effect of several types of commonly used controllers is examined. To assess the validity of this system, an arc length step experiment, various wire feed speed experiments and a square sample experiment were performed. Findings The research findings show that the resented wire feed strategy and arc length control system can effectively guarantee the stability of the GTAW WAAM process. Originality/value This paper tries to make a foundation work to achieve omnidirectional welding and process stability of GTAW WAAM through wire feed geometry analysis and sensor information fusion control model. The proposed wire feed strategy is implementable and practical, and a novel sensor fusion control method has been developed in the study for varying current GTAW WAAM process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available