4.2 Article

Facies analysis and sequence stratigraphy of Kometan Formation (Upper Cretaceous) in the imbricated zone, northeastern Iraq

Journal

ARABIAN JOURNAL OF GEOSCIENCES
Volume 9, Issue 20, Pages -

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s12517-016-2794-y

Keywords

Kometan Formation; Cretaceous; Iraq; Sequence stratigraphy; Facies analysis; Stable isotopes

Ask authors/readers for more resources

Facies and sequence stratigraphic analysis of the Kometan Formation (Upper Cretaceous) were studied from Kometan village, Kurdistan region of northeastern Iraq. Lithologically, the formation consists of 44 m of white weathering, light grey, thin to medium-bedded highly fractured limestones with chert nodules. Petrographic study of the carbonates shows that both skeletal and non-skeletal grains were present. The skeletal grains include a variety of planktonic foraminifera (including Oligostegina), calcispheres, ostracods, pelecypods, larva ammonite, and echinoderms. Non-skeletal grains include peloids only. Three main microfacies types are distinguished in the studied formation. The results of stable carbon and oxygen isotopes of the studied carbonate samples show negative values of delta O-18. These indicate that the seawater was warm with low salinity during precipitation of the carbonates in the Kometan Formation in northeastern Iraq. The positive delta C-13 values of carbonate samples, in the middle part of the formation, reflect the widespread deposition of organic-rich marine sediments during a transgression and deepening of the basin. Petrographic, facies and stable isotopic analyses revealed that the Kometan Formation was deposited in a warm, basinal, pelagic (open marine) environment with low salinity. The Kometan Formation consists of one complete third-order depositional sequence, separated by a sequence boundary (SB) of type 2. The third-order sequence is subdivided into a transgressive systems tract (TST) and highstand systems tract (HST). This reflects episodes of transgression and still stands of the relative sea level. The TSTs are topped by maximum flooding surface (MFS) characterized by deepening-/fining-upward parasequences implying a retrogradational stacking pattern. The HST is marked by shallowing-/coarsening-upward parasequences implying a progradational stacking pattern.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available