4.8 Article

The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1819077116

Keywords

nanodomain; cell wall; Arabidopsis; cytoskeleton; single particle tracking

Funding

  1. Biotechnology and Biological Sciences Research Council [BB/K009370/1]
  2. Oxford Brookes Nigel Groome studentship - Science and Technology Facilities Council (STFC) [16130041]
  3. BBSRC [BB/K009370/1] Funding Source: UKRI
  4. MRC [MC_EX_MR/K015591/1] Funding Source: UKRI

Ask authors/readers for more resources

Plant plasma-membrane (PM) proteins are involved in several vital processes, such as detection of pathogens, solute transport, and cellular signaling. For these proteins to function effectively there needs to be structure within the PM allowing, for example, proteins in the same signaling cascade to be spatially organized. Here we demonstrate that several proteins with divergent functions are located in clusters of differing size in the membrane using subdiffraction-limited Airyscan confocal microscopy. Single particle tracking reveals that these proteins move at different rates within the membrane. Actin and microtubule cytoskeletons appear to significantly regulate the mobility of one of these proteins (the pathogen receptor FLS2) and we further demonstrate that the cell wall is critical for the regulation of cluster size by quantifying single particle dynamics of proteins with key roles inmorphogenesis (PIN3) and pathogen perception (FLS2). We propose a model in which the cell wall and cytoskeleton are pivotal for regulation of protein cluster size and dynamics, thereby contributing to the formation and functionality of membrane nanodomains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available