4.4 Article

Mechanical and morphological investigations of 3D printed recycled ABS reinforced with bakelite-SiC-Al2O3

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954406219860163

Keywords

Three-dimensional printed parts; fused deposition modeling; mechanical properties; morphological; ceramic

Ask authors/readers for more resources

The utilization of thermosetting waste is a serious issue as it is not recycled commercially due to inherent molecular properties and high technology cost. This research details the study of the mechanical behavior and surface analysis with energy-dispersive X-ray spectroscopy and scanning electron microscope of three-dimensional printed parts of the waste thermosetting polymer, bakelite (BAK) as the reinforcement along with ceramic particles (SiC and Al2O3) in recycled thermoplastic acrylonitrile butadiene styrene matrix for sustainability. The process involves twin-screw extrusion for the preparation of filament, followed by 3D printing of functional prototypes on fused deposition modeling setup. The 3D printed parts prepared with fused deposition modeling were used for the testing of mechanical, thermal, and morphological properties. The results of the present study suggests that for commercial applications recycling of thermoplastic up to 10 wt% can be easily performed without a change in any hardware/ software configuration of the fused deposition modeling setup and the ceramic concentration in thermoplastic-thermosetting blends further led to better mechanical and surface properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available