4.6 Article

Scalable methods for analyzing and visualizing phylogenetic placement of metagenomic samples

Journal

PLOS ONE
Volume 14, Issue 5, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0217050

Keywords

-

Funding

  1. Klaus Tschira Stiftung gGmbH

Ask authors/readers for more resources

Background The exponential decrease in molecular sequencing cost generates unprecedented amounts of data. Hence, scalable methods to analyze these data are required. Phylogenetic (or Evolutionary) Placement methods identify the evolutionary provenance of anonymous sequences with respect to a given reference phylogeny. This increasingly popular method is deployed for scrutinizing metagenomic samples from environments such as water, soil, or the human gut. Novel methods Here, we present novel and, more importantly, highly scalable methods for analyzing phylogenetic placements of metagenomic samples. More specifically, we introduce methods for (a) visualizing differences between samples and their correlation with associated meta-data on the reference phylogeny, (b) clustering similar samples using a variant of the k-means method, and (c) finding phylogenetic factors using an adaptation of the Phylofactorization method. These methods enable to interpret metagenomic data in a phylogenetic context, to find patterns in the data, and to identify branches of the phylogeny that are driving these patterns. Results To demonstrate the scalability and utility of our methods, as well as to provide exemplary interpretations of our methods, we applied them to 3 publicly available datasets comprising 9782 samples with a total of approximately 168 million sequences. The results indicate that new biological insights can be attained via our methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available