4.7 Article

Ethephon-regulated maize internode elongation associated with modulating auxin and gibberellin signal to alter cell wall biosynthesis and modification

Journal

PLANT SCIENCE
Volume 290, Issue -, Pages -

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2019.110196

Keywords

Ethephon; Internode elongation; Cell wall biosynthesis and modification; Auxin; Gibberellin acid; Maize

Funding

  1. National Key Research and Development Program of China [2017YFD0300410]
  2. National Natural Science Foundation of China [31425017]

Ask authors/readers for more resources

Ethephon efficiently regulates plant growth to modulate the maize (Zea mays L.) stalk strength and yield potential, yet there is little information on how ethylene governs a specific cellular response for altering internode elongation. Here, the internode elongation kinetics, cell morphological and physiological properties and transcript expression patterns were investigated in the ethephon-treated elongating internode. Ethephon decreased the internode elongation rate, shortened the effective elongation duration, and advanced the growth process. Ethephon regulated the expression patterns of expansin and secondary cell wall-associated cellulose synthase genes to alter cell size. Moreover, ethephon increased the activities and transcripts level of phenylalanine ammonia-lyase and peroxidase, which contributed to lignin accumulation. Otherwise, ethephon-boosted ethylene evolution activated ethylene signal and increased ZmGA2ox3 and ZmGA2ox10 transcript levels while down-regulating ZmPIN1a, ZmPIN4 and ZmGA3ox1 transcript levels, which led to lower accumulation of gibberellins and auxin. In addition, transcriptome profiles confirmed previous results and identified several transcription factors that are involved in the ethephon-modulated transcriptional regulation of cell wall biosynthesis and modification and responses to ethylene, gibberellins and auxin. These results indicated that ethylene-modulated auxin and gibberellins signaling mediated the transcriptional operation of cell wall modification to regulate cell elongation in the ethephon-treated maize internode.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available