4.7 Article

Powerdress as the novel regulator enhances Arabidopsis seeds germination tolerance to high temperature stress by histone modification of SOM locus

Journal

PLANT SCIENCE
Volume 284, Issue -, Pages 91-98

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2019.04.001

Keywords

ABI3; Arabidopsis; Histone modification; PWR; SOM

Funding

  1. Shanghai University
  2. National Natural Science Foundation of China [31470348, 31570279]
  3. Key Project of Yunnan Applied Basic Research [2016FA015]

Ask authors/readers for more resources

Seeds germination or dormancy is strictly controlled by endogenous phytohormone signal and environment cues. High temperature (HT) suppresses seeds germination or triggers seeds dormancy but underlying mechanism by which HT mediates seeds germination thermoinhibition needs more investigating. SOM is reported as the critical factor negatively controls light-irradiation seeds germination by altering Abscisic acid (ABA) and gibberellin acid (GA) biosynthesis. Here we found that HT accelerates SOM expressing through ABA signal transduction component ABI3, both of abi3 and som mutants seeds show high germination rate under HT in contrast to wild type seeds. Using ABI3 as the bait, we identified the epigenetic factor Powerdress (PWR) as the ABI3 interaction protein. Genetic and physiological analysis showed that PWR negatively control the expressing of SOM, and overexpressing PWR enhanced, while pwr mutant reduced, seeds germination thermotolerance. Without HT stress, PWR accelerated the histone H3 deacetylation level and H2A.Z deposition at SOM locus, and thus suppressed ABI3-dependent SOM transcription for seeds germination, HT stress block PWR transcriptional level, thus attenuated the inhibition effect of PWR on SOM expressing, resulting into seeds germination thermoinhibition. Thus our finding propose a new function of PWR in controlling seeds germination under HT through histone acetylation modification and H2A.Z deposition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available