4.7 Article

Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K+/Na+ homeostasis and water status

Journal

PLANT CELL REPORTS
Volume 38, Issue 9, Pages 1151-1163

Publisher

SPRINGER
DOI: 10.1007/s00299-019-02434-w

Keywords

Piriformospora indica; Salinity; Lycopersicon esculentum; Aquaporin; Ionic homeostasis; Mineral nutrition

Categories

Ask authors/readers for more resources

Key message Piriformospora indica confers salt tolerance in tomato seedlings by increasing the uptake of nutrients such as N, P and Ca, improving K+/Na+ homoeostasis by regulating the expression of NHXs, SOS1 and CNGC15 genes, maintaining water status by regulating the expression of aquaporins. Piriformospora indica, an endophytic basidiomycete, has been shown to increase the growth and improve the plants tolerance to stressful conditions, especially salinity, by establishing the arbuscular mycorrhiza-like symbiotic relationship in various plant hosts. In the present research, the effect of NaCl treatment (150 mM) and P. indica inoculation on growth, accumulation of nutrients, the transcription level of genes involved in ionic homeostasis (NHXs, SOS1 and CNGC15) and regulating water status (PIP1;2, PIP2;4, TIP1;1 and TIP2;2) in roots and leaves of tomato seedlings were investigated. The P. indica improved the uptake of N, P, Ca and K, and reduced Na accumulation, and had no significant effect on Cl accumulation in roots and leaves. The endophytic fungus also increased in K+/Na+ ratio in roots and leaves of tomato by regulating the expression of NHX isoforms and upregulating SOS1 and CNGC15 expression. Salinity stress increased the transcription of PIP2;4 gene and reduced the transcription of PIP1;2, TIP1;1 and TIP2;2 genes compared to the control treatment. However, P. indica inoculation upregulated the expression of PIP1;2 and PIP2;4 genes versus non-inoculated plants but did not have a significant effect on TIP1;1 and TIP2;2 expression. These results conclude that the positive effects of P. indica on nutrients accumulation, ionic homeostasis and water status lead to the increased salinity tolerance and the improved plant growth under NaCl treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available