4.7 Article

Low pH altered salt stress in antioxidant metabolism and nitrogen assimilation in ginger (Zingiber officinale) seedlings

Journal

PHYSIOLOGIA PLANTARUM
Volume 168, Issue 3, Pages 648-659

Publisher

WILEY
DOI: 10.1111/ppl.13011

Keywords

-

Categories

Funding

  1. China Agriculture Research System [CARS-24-A-09, SYL2017YSTD06]

Ask authors/readers for more resources

The effects of low pH on antioxidant metabolism and nitrogen (N) assimilation in ginger seedlings under salt stress were investigated. A two-way randomized block design was used: the main treatment consisted of two pH levels, normal and low pH (6.0 and 4.0, respectively), and the other treatment consisted of two salinity levels, 0 and 100 mmol l(-1) Na+ (NaCl and Na2SO4). The results showed that low pH decreased the malondialdehyde (MDA) and hydrogen peroxide contents of ginger seedling leaves under salt stress. Moreover, low pH and salt stress significantly decreased the contents of non-enzymatic antioxidants, including ascorbate (AsA) and glutathione (GSH), and increased the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR). In addition, salt stress inhibited the N assimilation process in ginger seedling leaves, but low pH improved N assimilation under salt stress. Our finding was that low pH alleviated oxidative damage and promoted N assimilation under salt stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available