4.7 Review

Nitric oxide-mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects

Journal

PHYSIOLOGIA PLANTARUM
Volume 168, Issue 2, Pages 318-344

Publisher

WILEY
DOI: 10.1111/ppl.13004

Keywords

-

Categories

Funding

  1. National Key Research and Development Program of China [2018YFD1000600]
  2. Independent Research Topics of the State Key Laboratory of Subtropical Silviculture [ZY20180208, ZY20180308]
  3. Key Research and Development Program of Zhejiang Province [2018C02004]
  4. Key Project of Zhejiang Provincial Natural Science Foundation [LZ18C160001]
  5. Fruit Innovation Team Project of Zhejiang Province [2016C02052-12]
  6. National Undergraduate Innovation and Entrepreneurship Training Project [201610341010]
  7. Undergraduate Science and Technology Innovation Plan of Zhejiang Province [2017R412006]
  8. Undergraduate Research Training Program in Zhejiang A F University [102-2013200005, 102-2013200041, 102-2013200042, KX20180047, KX20180043, KX20180065]

Ask authors/readers for more resources

Given their sessile nature, plants continuously face unfavorable conditions throughout their life cycle, including water scarcity, extreme temperatures and soil pollution. Among all, metal(loid)s are one of the main classes of contaminants worldwide, posing a serious threat to plant growth and development. When in excess, metals which include both essential and non-essential elements, quickly become phytotoxic, inducing the occurrence of oxidative stress. In this way, in order to ensure food production and safety, attempts to enhance plant tolerance to metal(loid)s are urgently needed. Nitric oxide (NO) is recognized as a signaling molecule, highly involved in multiple physiological events, like the response of plants to abiotic stress. Thus, substantial efforts have been made to assess NO potential in alleviating metal-induced oxidative stress in plants. In this review, an updated overview of NO-mediated protection against metal toxicity is provided. After carefully reviewing NO biosynthetic pathways, focus was given to the interaction between NO and the redox homeostasis followed by photosynthetic performance of plants under metal excess.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available