4.7 Article

Numerical investigation of wake structures of an atmospheric entry capsule by modal analysis

Journal

PHYSICS OF FLUIDS
Volume 31, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5092166

Keywords

-

Funding

  1. Japan Society for the Promotion of Science (JSPS) KAKENHI [JP16H01563]

Ask authors/readers for more resources

This study investigates the flow structures behind an atmospheric entry capsule at Mach number 0.4 through an improved detached eddy simulation and a modal analysis. The simulated flowfields reveal relatively low-frequency peaks of St approximate to 0.016 and St = 0.17-0.2 in the aerodynamic coefficient variation, where St is the nondimensional frequency. Then, the dominant fluid structures that cause the frequency peaks are identified through dynamic mode decomposition and the compressive-sensing-based mode selection method. Many of the dominant fluid phenomena have a frequency of St approximate to 0.2. In this frequency range, the fluid phenomena are mainly characterized with a large-scale vortex shedding separated from the capsule's shoulder part and with a helical fluid structure in the wake. Moreover, the variation in the lift coefficient of the capsule is mainly attributed to the large-scale vortex shedding phenomenon. Furthermore, a fluid phenomenon at a frequency of St = O(0.01) is found, which describes the pulsation, or periodic growth or shrinkage, of the recirculation bubble, accompanied by pressure fluctuation behind the capsule that exerts a large drag fluctuation of the capsule. Additionally, this phenomenon seems related to the dynamic instability phenomena of the capsule, as indicated by its time scale, which is close to that of the capsule's attitude motion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available