4.8 Article

Hierarchical Connectome Modes and Critical State Jointly Maximize Human Brain Functional Diversity

Journal

PHYSICAL REVIEW LETTERS
Volume 123, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.123.038301

Keywords

-

Funding

  1. Hong Kong Baptist University (HKBU) Strategic Development Fund, Hong Kong Research Grant Council [GRF12302914, GRF12200217]
  2. National Natural Science Foundation of China [11802229, 11772242, 11275027, 61473221, 61433014]
  3. Outstanding Youth Science Fund of Xi'an University of Science and Technology [2019YQ3-11]
  4. RGC
  5. HKBU

Ask authors/readers for more resources

The brain requires diverse segregated and integrated processing to perform normal functions in terms of anatomical structure and self-organized dynamics with critical features, but the fundamental relationships between the complex structural connectome, critical state, and functional diversity remain unknown. Herein, we extend the eigenmode analysis to investigate the joint contribution of hierarchical modular structural organization and critical state to brain functional diversity. We show that the structural modes inherent to the hierarchical modular structural connectome allow a nested functional segregation and integration across multiple spatiotemporal scales. The real brain hierarchical modular organization provides large structural capacity for diverse functional interactions, which are generated by sequentially activating and recruiting the hierarchical connectome modes, and the critical state can best explore the capacity to maximize the functional diversity. Our results reveal structural and dynamical mechanisms that jointly support a balanced segregated and integrated brain processing with diverse functional interactions, and they also shed light on dysfunctional segregation and integration in neurodegenerative diseases and neuropsychiatric disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available