4.4 Article

Seagrass growth, reproductive, and morphological plasticity across environmental gradients over a large spatial scale

Journal

AQUATIC BOTANY
Volume 134, Issue -, Pages 87-96

Publisher

ELSEVIER
DOI: 10.1016/j.aquabot.2016.07.007

Keywords

Seagrass; Functional plasticity; Environmental gradients; Light availability; Salinity fluctuations; Temperature variability; Thalassia testudinum

Ask authors/readers for more resources

Phenotypic variability is a valuable adaptive mechanism for seagrass species that exist in a dynamic environment and can lead to significant intraspecific regional distinctions in life history. Research is lacking in studies examining the significance of within-species phenotypic variation in relation to gradients in environmental condition at a large spatial scale. These studies are essential to better understanding the potential for acclimatization and tolerance capabilities of seagrasses in declining coastal environments. Thalassia testudinum (turtlegrass) is a ubiquitous keystone seagrass species across the Caribbean and Gulf of Mexico (GoM) that populates both environmentally dynamic estuaries and stable coastal environments. In order to elucidate environmentally driven distinctions in spatially separated populations, we examined characteristics of shoots exposed to widely separated distinct coastal environments with varying degrees of environmental stability and suitability. In our comparison, three sampling locations vary considerably in ambient water temperature, salinity, and water column clarity along a gradient from oscillating, higher stress conditions to stable, more favorable conditions. Shoots tended to have larger leaves with more biomass in the stable environment and also exhibited an older shoot age structure and higher horizontal expansion rate. However, shoots in the more variable, higher stress environment exhibited greater evidence of flowering and first flowered at an earlier age. The results elucidate large spatially distinct and environmentally relevant differences in morphology, growth, and life history highlighting the need for more studies regarding phenotypic variability of seagrass populations across environmental gradients. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available