4.3 Article

Bailcalin Protects against Diabetic Cardiomyopathy throu Keap1/Nrf2/AMPK-Mediated Antioxidative and Lipid-Lowering Effects

Journal

OXIDATIVE MEDICINE AND CELLULAR LONGEVITY
Volume 2019, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2019/3206542

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [81600189, 81600191]
  2. Scientific and Technological Project of Henan Province [172102310531, 182102310495]

Ask authors/readers for more resources

Previous studies demonstrated that Bailcalin (BAI) prevented cardiac injuries under different disease models. Whether BAI protected against type 2 diabetes mellitus- (T2DM-) associated cardiomyopathy was investigated in this study. T2DM was established by the combination of streptozotocin injection and high-fat diet in mice. BAI was administered daily for 6 months. After evaluating cardiac functions, mice hearts were removed and processed for morphological, biochemical, and molecular mechanism analyses. Neonatal rat cardiomyocytes (NRCM) were isolated and treated with high glucose and palmitate (HG/Pal) for in vitro investigation. BAI significantly ameliorated T2DM-induced cardiomyocyte hypertrophy, interstitial fibrosis, and lipid accumulation accompanied by markedly improved cardiac functions in diabetic mice. Mechanically, BAI restored decreased phosphorylation of AMPK and enhanced expression and nuclei translocation of Nrf2. In in vitro experiments, BAI also prevented NRCM from HG/Pal-induced apoptosis and oxidative stress injuries by increasing p-AMPK and Nrf2 accumulation. The means by which BAI restored p-AMPK seemed to be related to the antioxidative effects of Nrf2 after silencing AMPK or Nrf2 in NRCM. Furthermore, BAI regulated Nrf2 by inhibiting Nrf2 ubiquitination and consequent degradation mediated by Keap1. This study showed that BAI alleviated diabetes-associated cardiac dysfunction and cardiomyocyte injuries in vivo and in vitro via Keap1/Nrf2/AMPK-mediated antioxidation and lipid-lowering effects. BAI might be a potential adjuvant drug for diabetes cardiomyopathy treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available