4.8 Article

Mammalian CST averts replication failure by preventing G-quadruplex accumulation

Journal

NUCLEIC ACIDS RESEARCH
Volume 47, Issue 10, Pages 5243-5259

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkz264

Keywords

-

Funding

  1. National Key R&D Program of China [2017YFC1001904]
  2. National Natural Science Foundation of China [91649102, 31771520, 31471293, 21177091, 81772243, 21647008, 81501386, 81671054, 81771135]
  3. Natural Science Foundation of Tianjin [17JCYBJC42700]
  4. PUMC Youth Fund and PUMC Fundamental Research Funds for the Central Universities [2018RC310020, 2017310026]
  5. National Institutes of Health [RO1041803]
  6. Ministry of Science and Technology [2017YFC1001904]

Ask authors/readers for more resources

Human CST (CTC1-STN1-TEN1) is an RPA-like complex that associates with G-rich single-strand DNA and helps resolve replication problems both at telomeres and genome-wide. We previously showed that CST binds and disrupts G-quadruplex (G4) DNA in vitro, suggesting that CST may prevent in vivo blocks to replication by resolving G4 structures. Here, we demonstrate that CST binds and unfolds G4 with similar efficiency to RPA. In cells, CST is recruited to telomeric and non-telomeric chromatin upon G4 stabilization, even when ATR/ATM pathways were inhibited. STN1 depletion increases G4 accumulation and slows bulk genomic DNA replication. At telomeres, combined STN1 depletion and G4 stabilization causes multi-telomere FISH signals and telomere loss, hallmarks of deficient telomere duplex replication. Strand-specific telomere FISH indicates preferential loss of C-strand DNA while analysis of BrdU uptake during leading and lagging-strand telomere replication shows preferential under-replication of lagging telomeres. Together these results indicate a block to Okazaki fragment synthesis. Overall, our findings indicate a novel role for CST in maintaining genome integrity through resolution of G4 structures both ahead of the replication fork and on the lagging strand template.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available