4.7 Article

Sr-, Zn- and Cd-exchanged zeolitic materials as water vapor adsorbents for thermal energy storage applications

Journal

APPLIED THERMAL ENGINEERING
Volume 106, Issue -, Pages 1217-1224

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2016.06.066

Keywords

Zeolite; Ion exchange; Water vapor; Adsorption; Thermal energy storage

Ask authors/readers for more resources

This paper reports the characterization of Sr-, Zn- and Cd-exchanged zeolitic materials as water vapor adsorbents, in order to evaluate the influence of the extraframework species on their adsorption properties. Both synthetic and natural substrates are taken into account. Water vapor adsorption isotherms on each ion-exchanged sample have been obtained at 298, 318, 338, and 358 K and have then been modeled using the Dubinin-Astakhov equation. Focusing on the possible implementation of such adsorbents in thermodynamic cycles, an estimation of their specific heat storage densities has been expressed. Results revealed that adsorbents of natural origin are not suitable for a valid employment in thermodynamic cycles, while FAU-type zeolite X samples exchanged with SP2+ or divalent transition metal ions (i.e., Zn2+ or Cd2+) show a significant potential as heat storage media. The same trend of the specific heat storage density with the cationic content of the adsorbent can be identified for both series of synthetic and naturally originating materials (i.e., Zn > Sr > Cd > Na), confirming how ion exchange allows effective tuning of zeolitic substrates when employed in thermodynamic cycles based on the reversible adsorption of water vapor. (C) 2016 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available