4.5 Article

Melatonin Enhances Autophagy and Reduces Apoptosis to Promote Locomotor Recovery in Spinal Cord Injury via the PI3K/AKT/mTOR Signaling Pathway

Journal

NEUROCHEMICAL RESEARCH
Volume 44, Issue 8, Pages 2007-2019

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-019-02838-w

Keywords

Spinal cord injury; Melatonin; Autophagy; PI3K; AKT; mTOR signaling pathway

Funding

  1. Natural Science Foundation of China [81471854, 81671907, 81601727]
  2. Jinzhou Medical University Department of Anatomy

Ask authors/readers for more resources

Spinal cord injury (SCI) leads to neuronal death resulting in central nervous system (CNS) dysfunction; however, the pathogenesis is still poorly understood. Melatonin (MT), a hormone secreted mainly by the pineal gland, is associated with neuroprotective effects against SCI. Enhanced autophagy can promote the recovery of locomotor function and reduce apoptosis after SCI. Interestingly, MT increases autophagy in SCI in vivo. Nevertheless, the ability of MT to increase autophagy and decrease apoptosis, and the potential effects on the recovery of motor neurons in the anterior horn after SCI remain to be clarified. In this study, we discovered that MT treatment improved motor function recovery in a rat SCI model. Indeed, MT upregulated the expression of the phosphatidylinositol 3-kinase (PI3K), while expression of protein kinase B (AKT) and mammalian target of rapamycin (mTOR) was downregulated after SCI. Additionally, MT increased the expression of autophagy-activating proteins, while the expression of apoptosis-activating proteins in neurons was decreased following SCI. Furthermore, autophagy was inhibited, while apoptosis was induced in SCI model rats and lipopolysaccharide (LPS)-stimulated primary neurons by treatment with MT, the PI3K inhibitor 3-methyladenine (3-MA) and mTOR inhibitor Rapamycin (Rapa). Collectively, our results suggest that MT can improve the recovery of locomotor function by enhancing autophagy as well as reducing apoptosis after SCI in rats, probably via the PI3K/AKT/mTOR signaling pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available