4.7 Article

Comparison of different cooling methods for lithium ion battery cells

Journal

APPLIED THERMAL ENGINEERING
Volume 94, Issue -, Pages 846-854

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2015.10.015

Keywords

Li-ion battery; Cooling method; Cooling model; Battery thermal management

Funding

  1. U.S. Department of Energy, Vehicle Technologies Office
  2. China Scholarship Council
  3. Doctoral Innovation Fund of BJTU [E13JB00150]

Ask authors/readers for more resources

Choosing a proper cooling method for a lithium-ion (Li-ion) battery pack for electric drive vehicles (EDVs) and making an optimal cooling control strategy to keep the temperature at a optimal range of 15 degrees C to 35 degrees C is essential to increasing safety, extending the pack service life, and reducing costs. When choosing a cooling method and developing strategies, trade-offs need to be made among many facets such as costs, complexity, weight, cooling effects, temperature uniformity, and parasitic power. This paper considers four cell-cooling methods: air cooling, direct liquid cooling, indirect liquid cooling, and fin cooling. To evaluate their effectiveness, these methods are assessed using a typical large capacity Li-ion pouch cell designed for EDVs from the perspective of coolant parasitic power consumption, maximum temperature rise, temperature difference in a cell, and additional weight used for the cooling system. We use a state-of-the-art Li-ion battery electro-chemical thermal model. The results show that under our assumption an air-cooling system needs 2 to 3 more energy than other methods to keep the same average temperature; an indirect liquid cooling system has the lowest maximum temperature rise; and a fin cooling system adds about 40% extra weight of cell, which weighs most, when the four kinds cooling methods have the same volume. Indirect liquid cooling is a more practical form than direct liquid cooling though it has slightly lower cooling performance. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available