4.8 Article

A near-field radiative heat transfer device

Journal

NATURE NANOTECHNOLOGY
Volume 14, Issue 8, Pages 751-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41565-019-0483-1

Keywords

-

Funding

  1. National Science Foundation [CBET-1253577]
  2. College of Engineering, Office of the Vice President for Research
  3. Utah Science Technology and Research (USTAR) initiative of the State of Utah
  4. College of Engineering, Health Sciences Center, Office of Vice President for Research

Ask authors/readers for more resources

Recently, several reports have experimentally shown near-field radiative heat transfer (NFRHT) exceeding the far-field blackbody limit between planar surfaces(1-5). However, owing to the difficulties associated with maintaining the nanosized gap required for measuring a near-field enhancement, these demonstrations have been limited to experiments that cannot be implemented in large-scale devices. This poses a bottleneck to the deployment of NFRHT concepts in practical applications. Here, we describe a device bridging laboratory-scale measurements and potential NFRHT engineering applications in energy conversion(6,7) and thermal management(8-10). We report a maximum NFRHT enhancement of approximately 28.5 over the blackbody limit with devices made of millimetre-sized doped Si surfaces separated by vacuum gap spacings down to approximately 110 nm. The devices use micropillars, separating the high-temperature emitter and low-temperature receiver, manufactured within micrometre-deep pits. These micropillars, which are about 4.5 to 45 times longer than the nanosize vacuum spacing at which radiation transfer takes place, minimize parasitic heat conduction without sacrificing the structural integrity of the device. The robustness of our devices enables gap spacing visualization by scanning electron microscopy (SEM) before performing NFRHT measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available