4.7 Article

Aqueous carbon nanotube nanofluids and their thermal performance in a helical heat exchanger

Journal

APPLIED THERMAL ENGINEERING
Volume 96, Issue -, Pages 364-371

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2014.10.096

Keywords

Nanofluid; Thermal conductivity; Rheology behaviour; Carbon nanotube; Heat exchanger; Helically coiled tube

Funding

  1. Swedish National Research Council
  2. Swedish Energy Agency

Ask authors/readers for more resources

This work experimentally investigated the hydraulic and thermal performance of aqueous multi-walled carbon nanotube (MWCNT) nanofluids in a double-pipe helically coiled heat exchanger. Measured viscosity and thermal conductivity values of the MWCNT nanofluids, instead of literature values or values calculated from correlations, were used for data analyses and performance evaluation of the nanofluids. A transient plane source method was adopted to measure thermal conductivity. The increase in viscosity of the nanofluids is much larger than the thermal conductivity enhancement. For example, the relative thermal conductivity is only 1.04 while the relative viscosity is 9.56 for a 1.0 wt% MWCNT/water nanofluid. Pressure drop and heat transfer characteristics were experimentally studied for aqueous MWCNT nanofluids of weight concentrations 0.02 wt%, 0.05 wt% and 0.1 wt% inside the helical heat exchanger. By using the measured nanofluid properties, the Wu et al. correlation and the Seban and McLaughlin correlation can reproduce the thermal behaviours of the tested MWCNT nanofluids for laminar flow and turbulent flow very well, respectively. Possible MWCNT effects, e.g., Brownian motion and thermophoresis, on the thermal performance in helically coiled tubes are probably unimportant. No heat transfer enhancement was found as a fixed flow velocity and a fixed pumping power were considered. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available