4.8 Article

Electrochemical Synthesis of Individual Core@Shell and Hollow Ag/Ag2S Nanoparticles

Journal

NANO LETTERS
Volume 19, Issue 8, Pages 5612-5619

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.9b02144

Keywords

nanoparticle collision; electrochemistry; phase transformation; growth kinetics

Funding

  1. Air Force Office of Scientific Research MURI [FA9550-14-1-0003]
  2. MRSEC Program of the NSF [DMR-1121252]

Ask authors/readers for more resources

This letter presents an electrochemical methodology for structure-tunable synthesis, characterization, and kinetic monitoring of metal- semiconductor phase transformations at individual Ag nanoparticles. In the presence of HS- in aqueous solution, the stochastic collision and adsorption of Ag nanoparticles at a Au microelectrode initiates the partial anodic transformation of Ag to Ag2S at each particle. A single continuous current transient is observed for each Ag nanoparticle reacted. The characteristic shapes of the transients are distinct from previously reported amperometric recordings of electrochemical reactions involving single nanoparticles and are highly uniform at a constant applied potential. The average maximum current increases while the event duration decreases as a function of increasing potential. Independent of applied potential, the electrochemical transformation event abruptly stops after converting similar to 80% of the Ag in the nanoparticle to Ag2S, a self-terminating process that does not occur for bulk Ag electrodes under similar conditions. The resulting products are a mixture of core@shell Ag@Ag2S nanoparticles with and without voids in the core, as characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). Both the frequency and size of voids increase at more positive potentials. The average size of the core@shell nanoparticles determined by coulometric analysis of the current transients agrees well with TEM measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available