4.4 Article

A Seasonally Coherent Calibration (SCC) Model for Postprocessing Numerical Weather Predictions

Journal

MONTHLY WEATHER REVIEW
Volume 147, Issue 10, Pages 3633-3647

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/MWR-D-19-0108.1

Keywords

Numerical weather prediction; forecasting; Probabilistic Quantitative Precipitation Forecasting (PQPF); Probability forecasts; models; distribution; Short-range prediction; Statistical forecasting; Ensembles

Ask authors/readers for more resources

Statistical calibration of forecasts from numerical weather prediction (NWP) models aims to produce forecasts that are unbiased, reliable in ensemble spread, and as skillful as possible. We suggest that the calibrated forecasts should also be coherent in climatology, including seasonality, consistent with observations. This is especially important when forecasts approach climatology as forecast skill becomes low, such as at long lead times. However, it is challenging to achieve these aims when data available to establish sophisticated calibration models are limited. Many NWP models have only a short period of archived data, typically one year or less, when they become officially operational. In this paper, we introduce a seasonally coherent calibration (SCC) model for working effectively with limited archived NWP data. Detailed rationale and mathematical formulations are presented. In the development of the model, three issues are resolved. These are 1) constructing a calibration model that is sophisticated enough to allow for seasonal variation in the statistical characteristics of raw forecasts and observations, 2) bringing climatology that is representative of long-term statistics into the calibration model, and 3) reducing the number of model parameters through sensible reparameterization to make the model workable with short NWP dataset. A case study is conducted to examine model assumptions and evaluate model performance. We find that the model assumptions are sound, and the developed SCC model produces well-calibrated forecasts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available