4.6 Article

Fully automatic liver attenuation estimation combing CNN segmentation and morphological operations

Journal

MEDICAL PHYSICS
Volume 46, Issue 8, Pages 3508-3519

Publisher

WILEY
DOI: 10.1002/mp.13675

Keywords

AADHS; deep neural network; deep learning; docker; fatty liver; liver attenuation; liver segmentation

Funding

  1. NSF CAREER [1452485]
  2. NIH [5R21 EY024036, R01 EB017230, R01 NS095291, R01 AR048797, R01 DK071891]
  3. Intramural Research Program, National Institute on Aging, NIH
  4. National Institutes of Health
  5. National Institute of Biomedical Imaging and Bioengineering training grant [T32-EB021937]
  6. ViSE/VICTR [VR3029]
  7. National Center for Research Resources [UL1 RR024975-01]
  8. NIH S10 Shared Instrumentation Grant [1S10OD020154-01]
  9. Vanderbilt IDEAS grant
  10. ACCRE's Big Data TIPs grant from Vanderbilt University
  11. NVIDIA Corporation
  12. VICTR CTSA award (NCATS/NIH) [ULTR000445]
  13. Vanderbilt University Medical Center
  14. Patient-Centered Outcomes Research Institute (PCORI) [CDRN-1306-04869]
  15. National Center for Advancing Translational Sciences [2 UL1 TR000445-06]

Ask authors/readers for more resources

Purpose Manually tracing regions of interest (ROIs) within the liver is the de facto standard method for measuring liver attenuation on computed tomography (CT) in diagnosing nonalcoholic fatty liver disease (NAFLD). However, manual tracing is resource intensive. To address these limitations and to expand the availability of a quantitative CT measure of hepatic steatosis, we propose the automatic liver attenuation ROI-based measurement (ALARM) method for automated liver attenuation estimation. Methods The ALARM method consists of two major stages: (a) deep convolutional neural network (DCNN)-based liver segmentation and (b) automated ROI extraction. First, liver segmentation was achieved using our previously developed SS-Net. Then, a single central ROI (center-ROI) and three circles ROI (periphery-ROI) were computed based on liver segmentation and morphological operations. The ALARM method is available as an open source Docker container (). Results Two hundred and forty-six subjects with 738 abdomen CT scans from the African American-Diabetes Heart Study (AA-DHS) were used for external validation (testing), independent from the training and validation cohort (100 clinically acquired CT abdominal scans). From the correlation analyses, the proposed ALARM method achieved Pearson correlations = 0.94 with manual estimation on liver attenuation estimations. When evaluating the ALARM method for detection of nonalcoholic fatty liver disease (NAFLD) using the traditional cut point of < 40 HU, the center-ROI achieved substantial agreements (Kappa = 0.79) with manual estimation, while the periphery-ROI method achieved excellent agreement (Kappa = 0.88) with manual estimation. The automated ALARM method had reduced variability compared to manual measurements as indicated by a smaller standard deviation. Conclusions We propose a fully automated liver attenuation estimation method termed ALARM by combining DCNN and morphological operations, which achieved excellent agreement with manual estimation for fatty liver detection. The entire pipeline is implemented as a Docker container which enables users to achieve liver attenuation estimation in five minutes per CT exam.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available