4.5 Article

Feasibility study of a flexible grinding method for precision machining of the TiAl-based alloy

Journal

MATERIALS AND MANUFACTURING PROCESSES
Volume 34, Issue 10, Pages 1160-1168

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10426914.2019.1628255

Keywords

Alloy; grinding; feasibility; flexible; precision; abrasive; wear; surface; roughness; morphology

Funding

  1. National Natural Science Foundation of China [51605056]
  2. Research Funds for Basic Science and Advanced Technology of Chongqing [cstc2016jcyjA0066]

Ask authors/readers for more resources

This study presents detailed experimental investigations on precision machining of the TiAl-based alloy with an abrasive belt flexible grinding method. Subsequently, the feasibility of this precision machining method is evaluated with respect to the material removal rate, abrasive wear, machined surface roughness, and residual stress. The material removal rate and surface roughness were determined as experimental indicators and were measured via a three-coordinate measuring instrument and surface profiler, respectively. Micro-morphologies of the machined surface and worn abrasive belt were investigated via a scanning electron microscope. The residual stress distributions in the machined surface layer were detected by using an X-ray diffractometer. The experimental results revealed that the aforementioned evaluation indicators satisfied the desired requirements, thereby indicating that the abrasive belt flexible grinding technique was suitable for precision machining of the TiAl-based alloy. Additionally, the optimal combinations of grinding parameters were determined to obtain desirable material removal rate and machined surface roughness. The basic wear processes and characteristics of the abrasive belt were thoroughly examined. The formation of desirable residual compressive stresses in the machined surface layer was mainly attributed to low frequency and small amplitude vibration knocking at the grinding interface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available