4.5 Article

SHORE-based detection and imputation of dropout in diffusion MRI

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 82, Issue 6, Pages 2286-2298

Publisher

WILEY
DOI: 10.1002/mrm.27893

Keywords

diffusion MRI; diffusion spectrum imaging; dropout; multi-shell; outliers; SHORE

Funding

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [SCHU 3040/1-1]

Ask authors/readers for more resources

Purpose In diffusion MRI, dropout refers to a strong attenuation of the measured signal that is caused by bulk motion during the diffusion encoding. When left uncorrected, dropout will be erroneously interpreted as high diffusivity in the affected direction. We present a method to automatically detect dropout, and to replace the affected measurements with imputed values. Methods Signal dropout is detected by deriving an outlier score from a simple harmonic oscillator-based reconstruction and estimation (SHORE) fit of all measurements. The outlier score is defined to detect measurements that are substantially lower than predicted by SHORE in a relative sense, while being less sensitive to measurement noise in cases of weak baseline signal. A second SHORE fit is based on detected inliers only, and its predictions are used to replace outliers. Results Our method is shown to reliably detect and accurately impute dropout in simulated data, and to achieve plausible results in corrupted in vivo dMRI measurements. Computational effort is much lower than with previously proposed alternatives. Conclusions Deriving a suitable outlier score from SHORE results in a fast and accurate method for detection and imputation of dropout in diffusion MRI. It requires measurements with multiple b values (such as multi-shell or DSI), but is independent from the models used for analysis (such as DKI, NODDI, deconvolution, etc.).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available