4.7 Article

Microwave-assisted deposition of silver nanoparticles on bamboo pulp fabric through dopamine functionalization

Journal

APPLIED SURFACE SCIENCE
Volume 386, Issue -, Pages 151-159

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2016.05.170

Keywords

Bamboo pulp fabric; Silver nanoparticle; Dopamine; Microwave irradiation

Funding

  1. National Natural Science Foundation of China [51203099]
  2. Science Foundation for Youth Scholars of Sichuan University, China [YJ2011020]

Ask authors/readers for more resources

Silver nanoparticles were synthesized on bamboo pulp fabric with dopamine as the adhesive and reducing agent under microwave radiation. The silver nanoparticle coated bamboo pulp fabrics were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and X-ray diffraction. Ultraviolet (UV) protection, color and water contact angles of the silver nanoparticle coated bamboo pulp fabrics were evaluated. In addition, the influences of concentrations of dopamine and treatment time on color strength (K/S values) of the silver nanoparticle coated fabric were investigated. Fastness to washing was employed to evaluate the adhesive strength between the silver coating and the bamboo pulp fabric modified with dopamine. The results show that the dopamine modified bamboo pulp fabric is evenly covered with silver nanoparticles. The silver nanoparticle coated bamboo pulp fabric modified with dopamine shows the excellent UV protection with an ultraviolet protection factor of 157.75 and the hydrophobicity with a water contact angle of 132.4. In addition, the adhesive strength between the silver nanoparticles and bamboo pulp fabric is significantly improved. Silver nanoparticles coating on bamboo pulp fabric modified with dopamine is environmentally friendly, easy to carry out and highly efficient. (C) 2016 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available