4.6 Article

Theory of Surface Forces in Multivalent Electrolytes

Journal

LANGMUIR
Volume 35, Issue 35, Pages 11550-11565

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.9b01110

Keywords

-

Funding

  1. Center for Enhanced Nanofluidic Transport (CENT), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0019112]
  2. Amar G. Bose Research Grant
  3. National Science Foundation Graduate Research Fellowship [1122374]

Ask authors/readers for more resources

Aqueous electrolyte solutions containing multivalent ions exhibit various intriguing properties, including attraction between like-charged colloidal particles, which results from strong ion-ion correlations. In contrast, the classical Derjaguin-Landau-Verwey-Overbeek theory of colloidal stability, based on the Poisson-Boltzmann mean-field theory, always predicts a repulsive electrostatic contribution to the disjoining pressure. Here, we formulate a general theory of surface forces, which predicts that the contribution to the disjoining pressure resulting from ion-ion correlations is always attractive and can readily dominate over entropic-induced repulsions for solutions containing multivalent ions, leading to the phenomenon of like-charge attraction. Ion-specific short-range hydration interactions, as well as surface charge regulation, are shown to play an important role at smaller separation distances but do not fundamentally change these trends. The theory is able to predict the experimentally observed strong cohesive forces reported in cement pastes, which result from strong ion-ion correlations involving the divalent calcium ion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available