4.8 Article

A Binding Site Hotspot Map of the FKBP12-Rapamycin-FRB Ternary Complex by Photoaffinity Labeling and Mass Spectrometry-Based Proteomics

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 141, Issue 30, Pages 11759-11764

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b03764

Keywords

-

Funding

  1. Burroughs Wellcome Fund
  2. Ono Pharma Foundation
  3. Sloan Research Foundation
  4. National Science Foundation
  5. Harvard University

Ask authors/readers for more resources

Structural characterization of small molecule binding site hotspots within the global proteome is uniquely enabled by photoaffinity labeling (PAL) coupled with chemical enrichment and unbiased analysis by mass spectrometry (MS). MS-based binding site maps provide structural resolution of interaction sites in conjunction with identification of target proteins. However, binding site hotspot mapping has been confined to relatively simple small molecules to date; extension to more complex compounds would enable the structural definition of new binding modes in the proteome. Here, we extend PAL and MS methods to derive a binding site hotspot map for the immunosuppressant rapamycin, a complex macrocyclic natural product that forms a ternary complex with the proteins FKBP12 and FRB. Photo-rapamycin was developed as a diazirine-based PAL probe for rapamycin, and the FKBP12-photo-rapamycin-FRB ternary complex formed readily in vitro. Photoirradiation, digestion, and MS analysis of the ternary complex revealed a McLafferty rearrangement product of photo-rapamycin conjugated to specific surfaces on FKBP12 and FRB. Molecular modeling based on the binding site map revealed two distinct conformations of complex-bound photo-rapamycin, providing a 5.0 angstrom distance constraint between the conjugated residues and the diazirine carbon and a 9.0 angstrom labeling radius for the diazirine upon photoactivation. These measurements may be broadly useful in the interpretation of binding site measurements from PAL. Thus, in characterizing the ternary complex of photo-rapamycin by MS, we applied binding site hotspot mapping to a macrocyclic natural product and extracted precise structural measurements for interpretation of PAL products that may enable the discovery of new binding sites in the undruggable proteome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available