4.7 Article

Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

Journal

APPLIED SURFACE SCIENCE
Volume 385, Issue -, Pages 130-138

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2016.05.084

Keywords

Polyethersulfone membrane; Ultrafiltration; Amino acids; Zwitterionic surface; Antifouling

Funding

  1. National Natural Science Foundation of China [51373034]
  2. Department of Science & Technology of Jiangsu Province, China [BA2013037, BY2015070-11]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions

Ask authors/readers for more resources

In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption related to protein with opposite electric charges. Furthermore, the ultrafiltration performance of the zwitterionic PES membranes was evaluated. The results showed that the modified membranes possessed of enhanced pure water flux, relative flux recovery and mildly lower rejection. The Darcy's Law analysis illustrated that the acidic amino acid grafted PES membranes had much lower permeation resistance due to hydrophilicty increasing and protein adsorption decreasing. Therefore, grafting natural amino acids onto PES ultrafiltration membrane provides an effective approach to combat biofouling in separation fields. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available