4.3 Article

Application of Multiscale Learning Neural Network Based on CNN in Bearing Fault Diagnosis

Publisher

SPRINGER
DOI: 10.1007/s11265-019-01461-w

Keywords

Data-driven; Convolutional neural network; Fault diagnosis; Multiscale learning neural network

Ask authors/readers for more resources

With the application of intelligent manufacturing becoming more and more widely, the losses caused by mechanical faults of equipment increase. Identifying and troubleshooting faults in an early stage are important. The process of traditional data-driven fault diagnosis method includes data acquisition, fault classification, and feature extraction, in which classification accuracy is directly affected by the result of feature extraction. As a common deep learning method in image recognition, the convolutional neural network (CNN) demonstrates good performance in fault diagnosis. CNN can adaptively extract features from original signals and eliminate the effect of conventional handcrafted features. In this study, a multiscale learning neural network that contains one-dimension (1D) and two-dimension (2D) convolution channels is proposed. The network can learn the local correlation of adjacent and nonadjacent intervals in periodic signals, such as vibration data. The Paderborn data set is came into use to demonstrate the classification accuracy of the method which is brought forward, which includes three conditions of healthy, outer ring (OR) damage and inner ring (IR) damage. The classification accuracy of the method which is put forward is up to 98.58%. The same dataset was applied to test the classification accuracy of support vector machine (SVM) for comparison. And the proposed multiscale learning neural network demonstrates considerable improvements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available